Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms
نویسندگان
چکیده
Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework for calibrating mobile sensor platforms that estimates all configuration parameters for any arrangement of positioning sensors, including odometry. In addition, we present a novel semi-rigid Simultaneous Localization and Mapping (SLAM) algorithm that corrects the vehicle position at every point in time along its trajectory, while simultaneously improving the quality and precision of the entire acquired point cloud. Using this algorithm, the temporary failure of accurate external positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of the two newly proposed algorithms on a wide variety of datasets.
منابع مشابه
Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملAutomatic and Full Calibration of Mobile Laser Scanning Systems
Mobile scanning, i.e., the practice of mounting laser scanners on moving platforms is an efficient way to acquire accurate and dense 3D point clouds of outdoor environments for urban and regional planning and architecture. The mobile scenario puts high requirements on the accuracy of the calibration of the measurement system, as small calibration inaccuracies lead to large errors in the resulti...
متن کاملSemi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds
Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions M...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملImproving the Realism of Existing 3D City Models
Within the paper, a novel approach for the reconstruction of geometric details of building façades is presented. It is based on 3D point clouds from terrestrial laser scanning. By a segmentation process, the approximate boundaries of the windows are detected and a cell decomposition of the façade is created. A classification of the cells determines a symmetric window arrangement of maximum like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013